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ABSTRACT

Mutation testing offers concrete test goals (mutants) and a rigorous
test efficacy criterion, but it is expensive due to vast numbers of
mutants, many of which are neither useful nor actionable. Prior
work has focused on selecting representative and sufficient mutant
subsets, measuring whether a test set that is mutation-adequate for
the subset is equally adequate for the entire set. However, no known
industrial application of mutation testing uses or even computes
mutation adequacy, instead focusing on iteratively presenting very
few mutants as concrete test goals for developers to write tests.
This paper (1) articulates important differences between muta-
tion analysis, where measuring mutation adequacy is of interest,
and mutation testing, where mutants are of interest insofar as
they serve as concrete test goals to elict effective tests; (2) intro-
duces a new measure of mutant usefulness, called test completeness
advancement probability (TCAP); (3) introduces an approach to
prioritizing mutants by incrementally selecting mutants based on
their predicted TCAP; and (4) presents simulations showing that
TCAP-based prioritization of mutants advances test completeness
more rapidly than prioritization with the previous state-of-the-art.
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1 INTRODUCTION

Mutation testing generates a set of program variants called mutants
and challenges a developer to create tests that detect them—that
is, distinguishes the variants from the original program. There is
strong empirical evidence that mutants are coupled to real faults
and that mutant detection is positively correlated with real fault
detection [4, 10, 23, 46]. This correlation is stronger than is the
case for code coverage criteria commonly used in practice (e.g.,
statement and branch coverage [19, 55]).

Mutation testing is expensive due to the large number of mutants
that can be generated for a given software system. Recent research,
focusing on the practicality of presenting mutants as test goals,
identified the total number of mutants and the fact that most of them
are not useful test goals as key challenges to adoption [7, 46, 48].
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Further, equivalent and redundant mutants make it difficult for
a developer to assess how close they are to achieving mutation
adequacy [32]. Equivalent mutants are functionally identical to the
original program, and therefore cannot be detected by any test.
Redundant mutants are functionally identical to other mutants, and
are therefore always detected by tests that detect the other mutants.

To make mutation testing feasible for practitioners, it is nec-
essary to select just a few of the numerous mutants produced by
current mutation systems. Given that many mutants are not useful,
such a selection strategy must be biased toward useful mutants.
Furthermore, neither achieving nor measuring mutation adequacy
is among the reported desiderata of industrial mutation testing
systems, which are instead concerned with iteratively presenting
one or a small number of mutants as test goals to incrementally
improve test quality over time [7, 45, 46, 48].

This paper proposes a new measure for mutant usefulness, which
values mutants according to their likelihood of eliciting a test that
advances test completeness, and evaluates the measure’s ability to
effectively prioritize mutants. Specifically, this paper contributes:

e An articulation of the differences between two mutation use
cases—mutation analysis vs. mutation testing—and implica-
tions for empirically evaluating them (Section 3).

e A new measure, test completeness advancement probability
(TCAP), that quantifies mutant usefulness (Section 4).

e A mutation testing approach that prioritizes mutants for
selection based on their predicted TCAP (Section 5).

e An evaluation showing that, for a variety of different initial
test set coverages, prioritizing mutants according to TCAP
improves test completeness more rapidly than the previous
state-of-the-art (random selection) (Section 6).

2 BACKGROUND

A mutation operator is a program transformation rule that gen-
erates a mutant (i.e., program variant) of a given program based
on the occurrence of a particular syntactic element. One example
of a mutation operator is the replacement of an instance of the
arithmetic operator “x” with “/”. Specifically, if a program contains
an expression “a * b”, for arbitrary expressions “a” and “b”, this
mutation operator creates a mutant where “a / b” replaces this
expression. The mutation is the syntactic change that a mutation
operator introduces. A mutation operator is applied everywhere it
is possible to do so. In the example above, if the arithmetic operator
“x” occurs multiple times, the mutation operator will create a sepa-
rate mutant for each occurrence. This paper considers first-order
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mutants, where each mutant contains exactly one mutation, as op-
posed to higher-order mutants, where each mutant is the product
of multiple applications of mutation operators.

A mutation operator group is a set of related mutation operators.
For example, the AOR (arithmetic operator replacement) mutation
operator group contains all mutation operators that replace an
arithmetic operator, including the example above.

A mutant may behave identically to the original program on all
inputs. Such a mutant is called an equivalent mutant and cannot
be detected by any test. As an example, consider the if statement
in Figure 1a, which determines the smaller value of two integers:
numbers[i] < min. Replacing the relational operator < with <= results
in the equivalent mutant numbers[i] <= min—if numbers[i] and min
are equal, assigning either value to min is correct, and hence both
implementations are equivalent.

A trivial mutant is one that is detected due to an exception
by every test case that executes the mutated code location. As
an example, consider the for loop in Figure 1a, which includes a
boundary check for an array index (for int i=1; i<numbers.length;
++1). If the index variable i is used to access the array numbers then
a mutation i<=numbers.length always results in an exception, as
the last value for i is guaranteed to index numbers out of bounds.
Hence, this mutant is trivial, as any test that reaches the loop will
terminate with an exception.

2.1 Dominator Mutants

Given a set of mutants M, a test set T is mutation-adequate with
respect to M iff for every non-equivalent mutant m in M, there is
some test t in T such that ¢ detects m. However, mutation operators
generate far more mutants than are necessary: the cardinality of
the mutant set is much larger than the cardinality of the mutation-
adequate test set. This redundancy among generated mutants was
formally captured in the notion of minimal mutation [3]. Given any
set of mutants M, a dominator set of mutants D is a minimal subset
of M such that any test set that is mutation-adequate for D is also
mutation-adequate for M.

Computing a dominator set is an undecidable problem, but it
is possible to approximate it with respect to a test set [31]—the
more comprehensive the test set, the better the approximation. This
approximation is not useful to a developer interested in writing
tests (they do not yet have a test set with which to approximate a
dominator set). However, from a research and analysis perspective,
a dominator set provides a precise measure for redundancy in a set
of mutants, and hence the dynamic approximation approach is an
important research tool for analyzing mutation testing techniques.

Given a finite set of mutants M and a finite set of tests T, mutant
m; dynamically subsumes mutant m; if some test in T detects m;
and every testin T that detects m; also detects m . If m; dynamically
subsumes m; but the converse is not true, the subsumption is strict.
If two mutants m; and m; in M are detected by exactly the same
tests in T, m; and mj, the subsumption is not strict.

The Dynamic Mutant Subsumption Graph (DMSG) captures the
subsumption relationship among mutants [31]. Each node in a
DMSG represents a maximal set of redundant mutants and each
edge represents the dynamic subsumption relationship between
two sets of mutants. More specifically, if m; strictly subsumes m;;,

lpublic int getMin(int[] numbers) {

2 int min = numbers[0];

3 for (int i=1; i < numbers.length; ++i) {
4 if (numbers[i] < min) {

5 min = numbers[i];

6 3

703

8 return min;

()}

(a) Mutated relational operator in two different program contexts.

Tests Mutant properties

1ty t3 t4 MutOp Ctx TCAP Equi. Triv. Dom.
m Q@ Q@ Q Q|<+—!= for| 00 yes — —
m Q@ O @|<+— == for| 0.5 — - -
ms |3k Ik ¥k ¥ |<+— <= for| 0.5 — yes —
my Q @ Q Q|<+—> for| 1.0 — — yes
m Q@ O @|<+——>= for| 0.5 — — —
me |3k I ¥k M |<+— true for| 05 — yes -
m; @ @ @ @|<+— false for| 1.0 — — yes
ms @ @ @ @|<+—!= if 1.0 — — yes
m Q @ @ @|<+— == if 1.0 — — yes
mo|l@ Q@ Q Q|<+—<= if 00 yes — -
mi@ @ @ @©|<+—> if 1.0 — — —
mg @ @ @ @ |<+—>= if 1.0 — — —
ms|@ @ @ @Q|<+— true if 1.0 — — yes
mas|@ @ @ @ |<+— false if 1.0 — — yes

Symbols indicate test results: © indicates that ¢; passes on m;; ® indicates
that ¢; fails on m; with an assertion failure; ¥ indicates that #; fails on m;
with an exception (i.e., the mutant crashes during execution).

(b) Test results and mutant properties.

(c) Dynamic mutant subsumption graph for the 14 mutants. Intu-
itively, mutants high in the graph are dominating other mutants,
whereas mutants low in the graph are subsumed.

Figure 1: Motivating example for program context and test
completeness advancement probability (TCAP).
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then there is an edge from the node containing m; to the node
containing m;. If a test detects any arbitrary mutant in the DMSG,
it is guaranteed to detect all the subsumed mutants [3], i.e., all
mutants in the same node or below it in the graph.

Figure 1b shows an example detection matrix that indicates
which test detects which mutants. In this example, the set M consists
of 14 mutants and the set T consists of 4 tests. Every test that detects
myy also detects ms, mg, and my;. Hence, m12 dynamically subsumes
these mutants. In the case of the first two mutants, the dynamic
subsumption is strict. However, m11 and my2 are detected by exactly
the same tests, so the subsumption is not strict.

The DMSG shown in Figure 1c visualizes the subsumption re-
lationships. Mutants m; and myg are not detected by any of the
tests in T—shown in the unconnected node with a dashed border.
These mutants are equivalent with respect to T but they may be
detectable by a test that is not an element of T. The DMSG is based
on a finite test set and can only make claims about equivalence
with respect to T.

Dominator mutants appear in the graph inside dominator nodes,
stylized with double borders. Figure 1c has two dominator nodes;
any combination of one mutant from each dominator node, such as
{m4, mg} or {mog, mi3}, forms a dominator set. Figure 1c has 4 %2 = 8
distinct dominator sets. Ultimately, only two of the 14 mutants
matter—if a test set detects the mutants in a dominator set, it is
guaranteed to detect all non-equivalent mutants in the DMSG.

3 MUTATION ANALYSIS VS. MUTATION
TESTING

This paper distinguishes between two mutation use cases: mutation
analysis, which we define as a (research-based) use of mutation
techniques to assess and compare the mutation adequacy of existing
test sets, and mutation testing, which we define as a testing approach
in which a developer interprets mutants as test goals and writes
tests to satisfy those goals.

This distinction is blurred in the literature and, as a consequence,
prior work usually applied the same methods for evaluating mutant
selection techniques to both analysis and testing use cases. Specifi-
cally, evaluations usually compare mutant selection strategies to
random mutant selection [1, 9, 16, 51, 54] by sampling a fraction
(often less than 10%) of all mutants once, and then evaluating how
effective a randomly sampled test set, which achieves full or x%
mutation adequacy on the sample of mutants, is for the full set
of mutants. In other words, these evaluations assess appropriate
sampling thresholds and how representative the sampled set of
mutants is of the entire set with respect to measuring mutation
adequacy. Examples include E-selective [41, 42], N% random [1],
and SDL [14, 49] approaches, all of which are evaluated with respect
to mutation adequacy or, more recently, with respect to minimal
mutation adequacy [33].

We argue that this evaluation methodology is appropriate for
mutation analysis, but not mutation testing. Mutant selection ap-
proaches for mutation analysis and mutation testing differ both in
their overall goals (selecting a representative subset of mutants to
measure an existing test set’s mutation adequacy vs. selecting a
test goal that elicits an effective test) and presumed use cases (a
priori vs. incremental mutant selection). This paper accounts for

these differences in the design of a selection strategy for mutation
testing and the methods used to evaluate its efficacy.

Goals The goal of mutation analysis is to assess and compare
existing test sets or testing approaches by measuring mutation ade-
quacy. In the context of mutation testing, however, achieving full
mutation adequacy is neither realistic nor desirable [33, 45]. Devel-
opers do not write mutation- or even coverage-adequate test sets,
and for good reasons [19, 34, 48]. The problems with achieving full
coverage adequacy (e.g., test goals that are unsatisfiable or simply
not worth satisfying) apply equally to mutation adequacy, with
mutation adequacy having the additional burden of equivalent mu-
tants, which pose an unrealistic workload [48]. Instead, industrial
mutation testing systems present few mutants at a time and do not
even compute mutation adequacy [7, 45, 46]. As a result, mutation
testing requires selecting the most useful of all mutants according
to some measure. (Section 4 proposes such a measure: TCAP.)

Evaluation Mutation analysis usually selects an entire subset
of mutants just once, a priori, while mutation testing repeatedly
and incrementally selects a few mutants. In the mutation testing
use case, a developer is presented with one or a few mutants at
a time, then resolves them by writing a test or labeling them as
equivalent [7, 46]. If a mutant is presented as a test goal and resolved
at a given time, then subsequent selections reflect the fact that the
mutant, as well as all subsumed mutants, are detected.

A key difference between a-priori and incremental mutant se-
lection is the effect of redundancy among mutants on the effort
required to resolve those mutants. As an example, consider a-priori
selecting three mutants with two selection strategies S and Ss.
Suppose the first mutant of Sy elicits a test that detects all three
mutants, whereas the first mutant of S elicits a test that detects
only that mutant, the second mutant is equivalent, and the third mu-
tant elicits an additional test. The mutant sets of S; and Sy contain
the exact same number of mutants, but the effort to resolve those
mutants differs—S; required resolving only one mutant whereas Sy
required resolving all three.

Prior evaluations of mutant selection techniques were largely
based on a-priori mutant selection and considered two measures:
(1) the number or ratio of selected mutants and (2) the mutation
adequacy achieved by a corresponding test set. This is appropriate
for the mutation analysis use case. For the mutation testing use case,
however, an evaluation should be principally concerned with the
effort required to resolve mutants and overall progress with respect
to advancing test completeness. In other words, such an evaluation
should be agnostic to redundancy and measure test completeness
over actual effort (as opposed to the number of selected mutants).

Our evaluation (Section 6) is aligned with the mutation testing
use case and adopts the model proposed by Kurtz et al. [33]. Specif-
ically, it operationalizes effort as a sequence of work steps wherein
a developer is presented a single mutant and then either writes a
test to detect it or labels it as equivalent. The amount of work to
resolve each mutant is presumed to be equal, and the total amount
of work is therefore the sum of the number of tests written and
the number of equivalent mutants. This model has two advantages.
First, it is agnostic to redundancy: after a test is introduced, all de-
tected mutants are removed from further consideration and never
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subsequently selected. Second, equivalent mutants have a cost in

that they consume work but do not advance test completeness!.

4 TEST COMPLETENESS ADVANCEMENT
PROBABILITY (TCAP)

We propose a new measure of mutant usefulness: test completeness
advancement probability (TCAP), which enables prioritizing mu-
tants for incremental selection. For a given mutant, TCAP is the
probability that a mutant, if presented as a test goal, will elicit a
test that advances test completeness. The probability distribution of
TCAP is generally unknowable, but it is possible to estimate it with
respect to an existing set of developer-written tests. For simplicity,
TCARP refers to its estimate in the remainder of this paper.

Kurtz et al. [33] defined test completeness in terms of work: what
fraction of the expected number of tests necessary for mutation
adequacy have been written? Kurtz et al. [33] further showed that
dominator score, which is the fraction of dominator nodes detected
by a test set, enjoys a linear relationship with test completeness.
This is in contrast to the traditional mutation adequacy score, which
rises rapidly with the first few tests due to redundant mutants, and
hence is a poor measure of test completeness. Consequently, this
paper uses dominator score as a proxy for test completeness.

Unlike prior work which defines mutant usefulness as a property
solely of the mutant itself (e.g., [3, 25, 29, 36]), TCAP quantifies
the usefulness of a mutant in terms of the value of its detecting
tests. This captures a key idea: a mutant is useful as a test goal only
insofar as it elicits useful tests, and a useful test is one that advances
test completeness. Notice four properties of TCAP:

(1) Equivalent mutants have a TCAP of 0. This is desirable and
captures the fact that equivalent mutants do not lead to tests.

(2) Dominator mutants have a TCAP of 1. This is in line with
the definition of test completeness: selecting a test for a dom-
inator mutant is guaranteed to advance test completeness.

(3) Subsumed mutants have a TCAP of strictly greater than 0,
but less than or equal to 1. Since subsumed mutants are
always detected by at least one test that also detects a domi-
nator mutant, their TCAP is strictly greater than 0. Note that
TCAP can be 1 for subsumed mutants, which is desirable
and captures the idea that a mutant’s usefulness is defined
by the tests that it elicits.

(4) The TCAP of a subsumed mutant is smaller than or equal to
that of its dominating mutant(s). This is desirable because
subsumed mutants can impose overhead if a dominating
mutant is later presented as a test goal: a developer might
write a weak test to detect a subsumed mutant and later
write a stronger test to detect a dominating mutant; it would
have been more efficient to simply write the stronger test.

Recall the motivating example in Figure 1: only the equivalent
mutants mq and m( reach the minimum TCAP of 0; all six domina-
tor mutants have a TCAP of 1; the subsumed mutants my and ms
as well as mutants m3 and mg have a TCAP of 0.5—half of the tests
that detect these mutants also detect a dominator node. In contrast,
the subsumed mutants m1; and m12 have a TCAP of 1, despite not

This model considers equivalent mutants as useless because they do not lead to tests.
This is a simplification: equivalent mutants can be useful and, for example, expose
code defects or lead to code refactorings [45, 48].

being dominators—both tests that detect these mutants also detect
a dominator mutant.

We do not value mutants according to their ability to detect
known faults (fault coupling) for three reasons. First, any bench-
mark that provides a set of known real faults is inevitably a subset
of the faults that could have been introduced or that already exist
but are yet to be detected. As a result, biasing mutant selection to
a limited set of mutants may cause parts of the programs under
test to not be mutated and tested at all. Second, the core idea of
mutation testing is to systematically mutate a program to guard
against fault classes, not just a few known faults. Finally, the set of
dominator mutants subsumes all fault-coupled mutants.

5 PREDICTING TCAP

To evaluate the benefits of using TCAP to prioritize mutants, we
trained a set of machine learning models—linear models and random
forests— that predict TCAP from mutants’ static program context.

Note that the purpose of training these machine learning models
is to evaluate whether program context is predictive of TCAP and
whether prediction performance translates to downstream improve-
ments in mutation testing when incrementally selecting mutants
based on said predictions. The goal is neither to maximize any
particular metric of model performance, nor to comprehensively
explore the design space of machine learning models to identify
the model design that would be best suited for this task. We conjec-
ture that more sophisticated machine learning models and a richer
feature set will likely yield larger improvements, but we leave an
in-depth exploration of modeling choices and feature importance
as future work.

5.1 Dataset

To produce a dataset, we generated mutants for subjects drawn from
Defects4] [22] and transformed them into feature vectors describing
the mutation and program context. Additionally, we associated each
mutant with a label for TCAP, derived from detection matrices.

We chose 9 subjects (projects) from the Defects4] benchmark [22]
(v2.0.0), which provides a set of 17 open-source projects accom-
panied by thorough test suites. We selected the latest version of
each project and generated mutants for the entire project. Out of
17 projects, we filtered out 5 because of technical limitations in the
mutation framework (e.g., JVM limits on the size of an individual
method) and 3 for which the computation of a full detection matrix
was computationally too expensive.

We used the Major mutation framework [21] to generate all
possible mutants for each of the 9 subjects and to compute the
detection matrices. Of the 2,033,496 entries in the detection matrices,
3.2% were inconclusive due to a timeout of 16t, + 1 seconds, where
1, is a sample of the test runtime before mutation. Mutants that
time out are considered detected.

We retained only mutants that are covered by at least one test
for the evaluation and training sets. Covered but undetected mu-
tants are deemed equivalent, which is a common approximation
in mutation testing research. Since uncovered mutants cannot be
detected but there are no tests that would increase confidence in the
approximation of mutant equivalence, these are excluded. Table 1
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Table 1: Summary of subject classes and covered mutants. Covering gives the mean number of tests covering each mutant, and

detecting gives the mean number of tests detecting each mutant.

Project Classes Mutants Tests
Total Equivalent Detectable

Dominator  All Total Covering Detecting
Chart 446 65,300 47.5% 25.5% 52.5% 2,193 24.8 6.9
Cli 20 2,838 16.0% 25.1% 84.0% 355 39.9 18.3
Codec 50 24,281 30.5% 29.9% 69.5% 776 10.3 3.9
Collections 257 19,480 22.9% 29.0% 77.1% | 16,069 26.9 14.5
Csv 9 1,986 17.5% 19.1% 82.5% 293 52.0 25.9
Gson 41 8,434 22.6% 24.0% 77.4% 1,035 98.2 41.0
JacksonXml 29 3,117 30.1% 26.1% 69.9% 183 39.2 15.7
JxPath 135 18,530 28.3% 20.1% 71.7% 386 76.6 28.0
Lang 97 38,532 17.8% 43.4% 82.2% 2,291 10.8 4.9
Overall 1,084 | 182,498 32.1% 29.6% 67.9% | 23,581 29.6 11.1

provides a detailed summary of our final dataset, showing only
retained (covered) mutants.

5.2 Program Context Features

Adopting the modeling approach and extending the model feature
set of Just et al. [25], we modeled program context features using
information available in a program’s AST. Given a mutated AST
node, we consider syntactic context (i.e., parent and child nodes
in the AST as well as nesting information) and semantic context
(i.e., the data type of expressions and operands or the data type of
method parameters) of that node.

Note that prior work (e.g., [53]) used information derived from
test executions (e.g., code coverage) when making predictions in
a mutation analysis context. Because our goal is to identify useful
mutants for tests that have not yet been written (mutation testing),
we necessarily avoid features derived from tests.

Specifically, we chose the following set of features:

o Mutation Operator. The specific program transformation that
generates a mutant (e.g., <+ !=in Figure 1).

o Mutation Operator Group. One of AOR, COR, EVR, LOR, LVR,
ORU, ROR, SOR, or STD.

e Node Data Types. The summary data type of the mutated
node in the AST (e.g., int, class, or boolean(int,int))
encoding the return and parameter types of methods and
operators, as well as a more abstract version which maps
complex types to their result types (e.g., boolean(int, int)
becomes boolean).

e Node Kind. The kind of the mutated AST node (e.g., ‘binary
operator’, ‘literal’, ‘method call’).

e AST Context. Four features, each of which is a categorical
variable: (1) the sequence of AST node kinds from the mu-
tated node (inclusive) to the root node of the AST; (2) extends
the first feature by including edge annotations describing
node relationships; e.g., a for loop has child nodes for:init,
for:cond, for:inc, or for:body; (3) and (4) correspond to
the first two features, but provide a higher level of abstraction

and include only those nodes that are top-level statements
(as opposed to individual expressions).

o Parent Context. Versions of AST context features that consider
only the immediate parent of the mutated node.

e Children Context. Three features that indicate the node kinds
of the immediate child nodes of the mutated AST node: (1)
an immediate child node is a literal; (2) an immediate child
node is a variable; (3) an immediate child node is an operator.

o Relative Position. The relative line number of the mutated
node inside its enclosing method, divided by the total number
of lines in that method.

o Nesting. Seven features in total: (a) the maximum block nest-
ing depth anywhere in the enclosing method; (b) the nesting
depth (number of enclosing blocks) considering only loops,
only conditionals, and any enclosing block (i.e., the sum
of the previous two); and (c) an additional three features
dividing the previous three by the maximum nesting depth.

5.3 Machine Learning Models

We evaluated a small number of model design choices and training
settings against an intrinsic measure of model performance with the
ultimate goal of choosing a single model for downstream evaluation.
Each training setting was a kind of hold-one-out train-test split,
using each held out project (or class in a given project) at a time as
the evaluation set. We trained all models using Scikit-Learn [44]
and evaluated every combination of the following choices:

(1) Model Choice. We compared ridge regression (« = 1.0) to a
random forest regression (max depth of 3 and 10 trees).

(2) Feature Set. We used a comprehensive set of features (All
features, enumerated in Section 5.2) and a subset of these fea-
tures (Few features, used in [25]: only the mutation operator
and detailed parent statement context).

(3) Training Setting. We evaluated the following train-test splits:

(a) All Projects: training on mutants from all projects, includ-
ing those in non-held-out classes in the same project,
and testing on mutants in the held-out class;
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(b) Between Projects: training on mutants strictly in other
projects and testing on mutants in the held-out project;
(c) Project-Only: training on mutants in all but one held-out
class in a single project and testing on mutants in the
held-out class.
These training-test splits correspond to three realistic muta-
tion testing settings, in which a developer intends to test a
new class in an existing project, with or without access to
other projects, or a completely new project.

We evaluated each combination of model choice, feature set, and
training setting by training one model for each possible training-test
split. For example, for a given model choice and feature set, the All
Projects training-test splits resulted in a total of 1,084 models, one
for each held-out class in the dataset, whereas the Between Projects
splits resulted in just 9 models, one for each held-out project.

We compared the combinations based on the Spearman rank
correlation coefficient between the TCAP predictions and labels.
The rank correlation coefficient is an appropriate intrinsic measure
because we are principally interested in the order in which mutants
will be selected. Figure 2 shows the distributions of the resulting
coefficients across all models. We find that:

(1) Model Choice. A linear model is sufficient for the feature sets
considered, an observation consistent with prior work [30].
Feature Set. A larger feature set modestly improves the per-
formance of linear models, but it reduces variation in correla-
tion coefficients between splits, perhaps by inducing models
that are less sensitive to noise in individual features. Many
of these features are collinear (e.g., the various Nesting fea-
tures). While this does not affect the suitability of our model
designs to the downstream evaluation, collinearity means
that linear model coefficients and permutation feature im-
portances are not individually interpretable and the high
cardinality of our categorical features mean the same for
random forest impurities. Still, an ad-hoc analysis suggests
that syntactic context features are the most important ones.
(3) Training Setting. The median performance of Project-Only is

consistently the best, especially for the non-linear models,

though the difference is less pronounced for linear models.

(2

~

While many of the model configurations perform similarly, we
choose the following configuration for the experiments in Section 6:

Model=Linear, Features=All, Training Setting=Project-Only

Project-Only is a common evaluation scenario and the chosen com-
bination has the highest median correlation coefficient.

6 EVALUATION

Consider developing code for a large project for which a significant
body of code, along with associated mutants and tests, already
exists. A realistic mutation testing scenario employing a TCAP-
based mutant selection approach is:

(1) Train a model that predicts TCAP on a project’s existing
mutants and tests.

(2) Generate new mutants for a developer’s current source file.

(3) Predict TCAP of these new mutants, using the trained model.

(4) Provide the developer with the highest TCAP mutant as
a test goal; if they write a test, then remove all mutants

Model = Linear Model = Random Forest
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Figure 2: Intrinsic evaluation of model performance, broken
down by model choice, feature set, and training setting. Each
boxplot contains nine data points, showing the distribution
of Spearman’s p for all projects. Whiskers extend up to 1.5
times the interquartile range.

detected by that test from further consideration. Repeat until
a stopping condition is met (e.g., some fixed amount of work
or a predicted TCAP threshold).

As motivated in Section 3, this scenario corresponds to mutation
testing, using TCAP to prioritize mutants for incremental mutant
selection, and each iteration corresponds to a single work unit.

Work Simulation To evaluate TCAP-based mutant prioritiza-
tion, we simulated the aforementioned scenario. A work simulation
begins with some initial—possibly empty—test set and the set of
mutants not detected by those tests, selects the highest-scoring
mutant according to some prioritization strategy, adds a randomly
selected test (without replacement) that detects that mutant to the
test set, and repeats with the remaining set of undetected mutants.
We evaluated TCAP-based mutant prioritization against two
baselines: Optimal and Random. Optimal prioritizes mutants based
on the TCAP labels in the dataset, and Random simply produces
a randomized order. Optimal establishes an upper bound on the
performance of any mutant prioritization strategy and Random,
perhaps surprisingly, corresponds to the state-of-the-art [18, 33].
All mutant prioritization strategies in our evaluation are stochas-
tic: ties for TCAP are broken randomly, and the test introduced at
each work step is chosen uniformly at random (without replace-
ment) from those that detect the selected mutant. Our evaluation
repeats each work simulation 1,000 times per class, for all strategies.
Figure 3 shows an example work simulation for a single class,
illustrating how test completeness increases over the course of the
simulation. The optimal strategy increases smoothly and rapidly to
a test completeness of 100% since each unit of work detects one—or
occasionally more than one—dominator node. TCAP-based selec-
tion does not increase as rapidly, despite making constant progress,
since the choices are imperfect. However, it increases substantially
faster than the random strategy. Consider the units of work required
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(a) A work simulation for a single class, plotting all individual 1,000
runs for each strategy.

Mutant prioritization Optimal === TCAP === Random
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(b) The mean test completeness (over the 1,000 individual runs) per
unit of work. The dashed line indicates the predicted TCAP.

Figure 3: An example work simulation for the CollectionUtils class in Apache Collections.

by each strategy to reach 0.75 test completeness. The optimal strat-
egy requires about 50 units of work, and TCAP-based selection re-
quires no more than 60. The random selection strategy, in compari-
son, requires about 100 units of work. In this simulation, a developer
interested in reaching a test completeness of 0.75 needed to resolve
about 20% more mutants with the TCAP-based selection, compared
to the optimal strategy, whereas randomly selecting mutants as
test goals would have required resolving 100% more mutants.

Efficiency Inorder to summarize a work simulation and quantify
the efficacy of a prioritization strategy, we define efficiency to be a
measurement of a strategy’s improvement over prioritizing mutants
randomly, normalized by the performance of the optimal strategy.
Specifically, the efficiency of the TCAP-based strategy t over a
sequence of work units u is:

PRCELIPNCET (1

where ¢}, ¢}, and c} are test completeness at work unit u for the
optimal, random, and TCAP strategies respectively. An optimal
strategy has an efficiency of 1, a strategy no better than random has
an efficiency of 0, and a strategy that performs worse than random
has a negative efficiency. Intuitively, a positive efficiency indicates
how much of the gap (wasted work) between random and optimal
the strategy closes. In contrast, a negative efficiency indicates an
underperforming strategy, but it is not normalized because we do
not include the worst possible strategy. The subsequent sections
show that TCAP-based prioritization is more efficient than random,
and they also investigate outliers of negative efficiency results.

Note that 46 out of 1,084 classes had either exactly one generated
mutant or very few, yet only equivalent, mutants. In either case,
all three prioritization strategies are trivially equivalent, and hence
we discarded these classes, leaving 1,038 classes for analysis.

o

Efficiency

T

Chart Cli Codec  Collections Csv Gson  JacksonXml  JxPath Lang
Project

Figure 4: Efficiency per class, grouped by project (7 extreme
outliers with efficiency < -2 are removed from the plot for
clarity; see Section 6.1.2 for details.)

6.1 Simulating Work

6.1.1 Measuring Average Efficiency. Our goal is to evaluate whether
TCAP-based mutant prioritization is likely to save work for a de-
vloper testing an arbitrary class with an arbitrary test budget. To
that end, we simulated the efficiency of TCAP-based prioritization
for all 1,038 retained classes in our data set. We derived TCAP
predictions from the model described in Section 5.

Figure 4 shows the distribution of efficiency per class, broken
down by project. The results show that TCAP-based prioritization
consistently and meaningfully outperforms the random strategy
across all projects, reducing median wasted work by between a
third and a half.

6.1.2 Inspecting Extreme Outliers. We encountered seven extreme
outliers, with efficiencies ranging from -2.04 to -6.49, which are
removed from Figure 4 for clarity. The asymmetry in the efficiency
measure motivates us to understand whether these extreme out-
liers indicate a potential for meaningful costs in practice over the
random approach. One possible explanation for these values lies
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Figure 5: Work simulation for an extreme outlier class (Con-
stantFactory), with a negative efficiency of -4.04.

Table 2: Efficiencies calculated as the sum of every work unit
across all classes, per project. Total refers to all classes across
all projects. These efficiencies account for class size and cor-
responding total number of work units. This is in contrast to
Figure 4, which plots distributions over class-level efficien-
cies irrespective of the number of work units required to
achieve 100% test completeness.

Chart Cli Codec Collections Csv Gson JacksonXml JxPath Lang‘Total

0.41 0.19 0.19 0.35 0.45 0.15 0.22 0.11  0.32 ‘ 0.33

in features that can make a mutant set well tailored to the random
approach. For example, all extreme outliers have five or fewer dom-
inator nodes, with four outliers only having one. The percentage
of covered mutants that are dominators is over 30% for all outliers.
Consequently, when most mutant choices increase completion and
problem size is small, an early suboptimal choice made by TCAP-
based selection can result in a substantial negative efficiency score
since random exhibits steady progress. Figure 5 demonstrates this
by showing an example for an extreme outlier (ConstantFactory
from Apache Collections) with a computed efficiency of -4.04.

To introduce some perspective, we can quantify the potential
real-world cost of these outliers for a developer generating the
handful of tests needed to reach full test completeness on classes
of this size. For 5 out of 7 outliers, the median time to completion
for TCAP-based selection is only 1-2 steps behind random (4-5
steps for the remaining 2 outliers). However, this measure ignores
the high variance present in the random approach, compared to
TCAP-based selection. When considering the mean completion
percentage, TCAP-based selection finishes with or before random
for 6 outliers, with the final outlier taking only one additional
step. In summary, none of these results suggest the potential for
significant performance concerns arising from these outlier values.

6.1.3  Accounting for Class Size. A potential weakness of the effi-
ciency analysis in Section 6.1.1 is that it treats all classes as being
equal, even though they differ in size and therefore perhaps in

Chart (p = 0.74) Cli (p =0.83) Codec (p =0.27)

Collections (p = 0.81) Csv (p =0.92) Gson (p =0.88)

o
i
&

Test Completeness
5

0.004 -

JacksonXml (p = 0.78) JxPath (p = 0.74)

r

0.00+ g = -
5 0.00 100 075 050 025 000100 075 050 025 000100 075 050 0.2¢
TCAP Threshold

Lang (p = 0.90)

Figure 6: TCAP threshold as a predictor of test completeness
(of the tests elicited by all mutants whose predicted TCAP
is above that threshold). Note the inverted TCAP Threshold
axis. All Spearman’s rank correletion coefficients (p) are sig-
nificant at p < 0.01.

importance or testing difficulty. To account for this, we computed
the overall efficiency per project and across all projects—that is,
the efficiency over all mutants per project and over all mutants
in the entire data set. This means that larger classes, with more
mutants and work steps, have a higher weight. Recall Figure 3b,
which visualized efficiency as the ratio of two areas. Intuitively,
overall efficiency is the ratio of the sums of these two areas across
all classes, as opposed to the average ratio per class. Table 2 shows
the results. While the efficiency varies between projects, it is con-
sistently positive. Furthermore, the variation in overall efficiency
aligns with the variation of median efficiency across projects. In
conclusion, TCAP-based mutation testing reduces the total amount
of wasted work by a third.

6.2 Deciding When to Stop Testing

Selecting mutants in order of descending predicted TCAP allows
a developer to focus time and effort on the most important test
goals. However, the ranking alone does not answer the fundamen-
tal question of when resolving additional mutants provides only
marginal benefits. In other words, when should a developer stop
testing and how well tested is a software system after writing tests
for all mutants with a TCAP above a given threshold.

In order to understand whether TCAP thresholds are predictive
of expected test completeness, we correlated the two for all classes
in our data set. Figure 6 shows the results, indicating a strong
association between TCAP thresholds and test completeness. At the
same time, the variance of TCAP thresholds is quite high for some
projects. For example, a developer interested in reaching at least 50%
test completeness for an arbitrary class in Csv could confidently
use a TCAP of about 0.6 as a stopping criterion. However, it’s
less clear what TCAP threshold a developer of Chart should use;
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Figure 7: Test sampling ratio vs. line coverage.

a substantial amount of TCAP density spans the range from 0.6
to 0.3. Nonetheless, these results are promising and suggest that
accounting for project-specific characteristics may reduce variance
and improve these predictive models. We leave a deeper exploration
as future work.

6.3 Simulating Work with Initial Test Sets

Our evaluation so far has focused on the efficiency of TCAP-based
mutant prioritization in a scenario where mutation testing is applied
from scratch. However, mutation testing often happens after some
tests have already been written. To assess whether the efficiency of
TCAP-based mutant prioritization is sensitive to the efficacy of an
existing test set, we performed an additional simulation. Specifically,
we ran an additional 1,000 work simulations for each class, with
a randomly selected, line-coverage-guided initial test set selected
from that class’ existing test set. For the purpose of this simulation,
we measure test set efficacy as the line-coverage ratio.

Our goal is to understand the relationship between an initial
test set’s code coverage and the efficiency of TCAP-based mutant
selection for all remaining mutants not detected by that initial test
set. Consequently, we aim to generate, for each class, a collection
of initial test sets with a uniform distribution of code-coverage
ratios. As noted by Chen et al. [10], the relationship between test
set size and code coverage is not linear. A uniform random selection
over test set size would drastically oversample test sets with very
high code-coverage ratios. Figure 7 visualizes this problem. Given
the log-linear relationship, we resorted to inverse transformation
sampling: (1) we fitted a log-linear model for each class, predicting
the log of the test sampling ratio from a given code-coverage ratio;
(2) we sampled 1,000 code-coverage ratios uniformly at random; (3)
we computed the corresponding test sampling ratio by sampling
from the inverse of the fitted model. The outcome of this sampling
approach was a pool of 1,000 test sets for each class, whose code-
coverage distribution was approximately uniform. Performing a
work simulation for each of these initial test sets yielded efficiency
values that correspond to a given code-coverage ratio.

For simplicity, Figure 8 shows these efficiency results, binned by
quartiles of the code-coverage distribution. A regression analysis,
using the non-binned data, confirmed the visual trend: the degree

Coverage quartile E 1 E 2 ﬁ 3 - 4

I

Chart cii Codec  Collections  Cev Gson  JacksonXml  JxPath Lang
Project

Efficiency

Figure 8: Efficiencies per class, broken down by project and
coverage quartile.

of code-coverage, achieved by the initial test suite, is either uncor-
related with efficiency or it is weakly positively correlated. The key
takeaway is that the efficiency of TCAP-based mutant prioritization
is agnostic to the efficacy of the existing test set.

7 THREATS TO VALIDITY

External Validity = Our results are potentially limited to the
projects in our empirical study, all of which are Java programs.
While we chose a variety of different projects, our results do not
necessarily apply to other languages or even to other Java projects
with different characteristics. Additionally, our estimates of TCAP
rely on existing, developer-written tests, which were likely not
developed in a mutation testing setting. It is possible that these
tests are not representative of those that developers would write
when resolving a mutant. However, a study of Petrovi¢ et al. [46],
in an industrial setting, found no qualitative differences between
tests written specifically for mutants vs. tests written for other
objectives.

Construct Validity As is common in mutation testing research,
we approximate equivalent mutants and dominator mutants with
a set of existing tests. Since test sets generally have to be quite
thorough before the dynamic approximation of the subsumption
relations converges to the true subsumption relation [31], we risk
identifying some non-dominator mutants as dominators, and vice-
versa. To counter this threat, we relied on projects that come with
thorough test sets. Additionally, as described in Section 3, we as-
sume that dominator score is a valid proxy for test completeness
(w.r.t. mutation testing). While any choice of proxy poses a threat
to construct validity, dominator score is a better proxy than the
alternative, the mutation score.

Internal Validity = We rely on an idealized model of mutation
testing. For example, we assume that work units correspond to some
constant amount of actual engineering effort, but there is some
variance around the time required to resolve a single mutant [48].
While we have no reason to believe this is the case, it is possible that
our evaluated model is biased toward mutants which systematically
take either more or less actual effort to resolve.
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8 RELATED WORK

The large number of generated mutants has long been a recognized
problem in mutation analysis and mutation testing research. This
section first discusses the most closely related work by Just et
al. [25] and Zhang et al. [53], and then provides a more general
overview of related work.

Closely Related Work Just et al. [25] demonstrated that pro-
gram context, derived from the abstract syntax tree, can signifi-
cantly improve estimates of a mutant’s expected usefulness. In this
context, usefulness was formally quantified as mutant utility along
three dimensions: equivalence, triviality, and dominance. In short,
Just et al. showed that mutant usefulness is context-dependent: a
mutation that leads to a useful mutant in one context does not
necessarily do so in another. While Just et al. showed that program
context correlates with mutant utility, they did not make use of
that correlation. They did not build a predictive model and did
not evaluate the benefits of using such a model for downstream
applications such as mutation testing.

Zhang et al. [53] used machine learning to predict mutation
scores both within and across projects for a fixed test suite, using
features derived both from program context and, critically, runtime
information such as code coverage which is only available after
tests have been written. Our predictions are very different: rather
than predicting expected mutation scores based on existing test
suites, we predict which mutants are useful and likely lead to addi-
tional, effective test cases. This distinction goes to the heart of the
differences between mutation analysis and mutation testing.

Mutation Testing in Practice  Petrovic et al. reported on a large-
scale deployment of mutation testing at Google [45-48]. Their
mutation testing system was integrated into a commit-oriented
development workflow. To combat the problems of generating too
many mutants, lines of code not changed by a commit were ignored,
as were lines in the commit not covered by at least one existing
test. For each remaining line of changed code, the system generated
at most one mutant. Our work is immediately applicable to this
use case. TCAP-based mutant selection allows for picking the most
useful mutant for any given line.

Beller et al. [7] report on a similar large-scale deployment at
Facebook. They integrated a mutation testing system into a commit-
oriented development workflow and evaluated the system’s accep-
tance by working engineers. They innovated by semi-automatically
learning a small number of context-sensitive mutation operators
from real faults, reducing the total number of mutants generated.

Useful Mutants Researchers have addressed the notion that
some mutants are more useful than others: disjoint mutants (Kin-
tis et al. [29]), stubborn mutants (Yao et al. [52]), difficult-to-detect
mutants (Namin et al. [36]), minimal (aka dominator) mutants (Am-
mann et al. [3] and Kurtz et al. [31]) and surface mutants (Gopinath
et al. [17]). Disjoint, stubborn, difficult-to-detect, dominator, and
surface mutants are suitable in a research context, but are not
directly applicable to the engineer in practice. Namin et al. [36]
described MuRanker, a tool to identify difficult-to-detect mutants
based on the syntactic distance between the mutant and the original
artifact. They postulated the existence of “hard mutants” that are
difficult to detect and for which a detecting test may also detect a

number of other mutants. This is closely related to what Kurtz et
al. have formalized as dominator mutants [3, 31]. The key idea that
distinguishes TCAP from other proxy measures for mutant useful-
ness is that a mutant is useful as a test goal in mutation testing only
insofar as it elicits a test that advances test completeness.

Mutant Selection  Prior work on mutant selection has focused
on using a subset of the mutation operators (Mathur [35], Offutt
et al. [41, 42], Wong et al. [50, 51], Barbosa et al. [6], Namin et
al. [37-39], Untch [49], Deng et al. [14], Delamaro et al. [13], and
Delamaro et al. [12]) and choosing a random subset of mutants
(Acree [1], Budd [9], and Wong and Mathur [51]). Comparisons of
the two approaches (Zhang et al. [54], Gopinath et al. [15, 16], and
Kurtz et al. [33]) ultimately showed the counterintuitive result that
existing mutant selection approaches do not outperform random
selection. Just et al.’s results [25] are consistent with these find-
ings: they showed that context-agnostic mutant selection shows no
appreciable improvement over random selection. However, their
results also demonstrated that program context is predictive of
mutant usefulness, which motivated our work.

Fault Coupling While the numbers of mutants generated by
mutation operators are already large, even more mutation operators
are needed to generate mutants that are coupled to real faults: empir-
ical studies of mutation adequacy (Daran and Thévenod-Fosse [11],
Namin and Kakarla [40], Andrews et al. [4, 5] and Just et al. [23])
showed that fault coupling is high, but also that there is room for im-
provement. The tailored mutant work of Allamanis et al. [2] and the
wild-caught mutant work of Brown et al. [8] demonstrated mutation
approaches that can close this gap, but at the cost of substantially
increasing the number of generated mutants. Context-based mutant
selection has the potential to make these high-coupling approaches
practical. Papadakis et al. [43] investigated the relationship between
various quality indicators (measures of usefulness) for mutants; of
particular relevance here is that, for the faults in their study, only
17% of dominator mutants were fault-revealing (a property closely
related to fault coupling). As discussed in Section 4, we did not
include a dimension for fault-coupling in our model precisely to
avoid the consequent blind spots. The results of Papadakis et al.
suggested that these blind spots may be quite large.

Equivalent and Redundant Mutants Jia et al. surveyed muta-
tion testing in general and provided a detailed review of mutation
equivalence detection techniques [20]. Reducing the number of
equivalent mutants presented as test goals is a key goal in mak-
ing mutation testing practical, and hence a key focus of our work.
Our work can be applied in addition to existing, context-agnostic
techniques: prioritizing mutants with respect to TCAP allows an
incremental mutant selection approach to avoid mutants that are
likely equivalent in a particular context. Researchers have also con-
sidered redundancy of mutants with respect to “weak” mutation:
Kaminski et al. [27, 28] for relational operator replacement (ROR),
Just et al. [24] for conditional operator replacement (COR), Yao et
al. [52] for the arithmetic operator replacement (AOR), and Just
and Schweiggert [26] over COR, UOI, and ROR. Weak redundancy
analysis techniques are sound, but only apply to a small subset of
the mutation operators, do not consider propagation, and do not
address the equivalent mutant problem.
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9 CONCLUSIONS

To make mutation testing feasible for practitioners, it is necessary to
address the vast number of mutants produced by current mutation
systems and the fact that most of these mutants are not useful.

This paper introduces a new measure for mutant usefulness,
called test completeness advancement probability (TCAP), built
on the insight that a mutant is useful as a test goal in mutation
testing only insofar as it elicits a useful test—one that advances test
completeness. Furthermore, this paper demonstrates that a mutant’s
static program context is predictive of TCAP and that prioritizing
mutants with TCAP can effectively guides mutation testing.

The main results of this paper are as follows:

(1) Program context, modeled as syntactic and semantic features
of a program’s abstract syntax tree, is predictive of TCAP.

(2) TCAP-based mutant prioritization, independently of initial
test set code coverage ratios, improves test completeness
far more rapidly than random prioritization—which perhaps
surprisingly had prevailed as the state-of-the-art despite
decades of research on selective mutation.

(3) Predicted TCAP and achieved test completeness are strongly
correlated. While predicted TCAP shows high variance for
some subjects, the results suggest that an improved pre-
diction model could render predicted TCAP as a practical
stopping criterion.

DATA & SOFTWARE AVAILABILITY

To aid reuse and replication, we provide the data and source code un-
derlying this work at: https://doi.org/10.6084/m9.figshare.19074428.
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